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Bound solitons in the ac-driven, damped nonlinear Schrodinger equation
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We demonstrate analytically that the effective potential of interaction between widely separated
solitons in a damped, ac-driven nonlinear Schrodinger equation is oscillatory at large distances. We
show numerically that two solitons in the system attract each other if the initial distance between
them is smaller than a certain critical value; consequently, they will either form an oscillatory
bound state with a finite lifetime, collapse to a stable single soliton state, or decay to the rotating
background. If the initial separation is greater than the critical value, they separate to form a stable
bound state at a second critical distance. The critical distances are in good agreement with the

analytical prediction.

PACS number(s): 03.40.Kf, 42.81.Dp, 52.35.Mw

The interaction of solitons with slightly overlapping
tails in the unperturbed (1+1)-dimensional nonlinear
Schrédinger (NLS) system is well known [1]. In the
unperturbed system the interaction potential of solitons
does not have a local minimum. However, recent analyt-
ical [4-6] and numerical work {7] has shown possible exis-
tence of bound solitons in various perturbed NLS and re-
lated systems. This arises from the fact that the interac-
tion potential is oscillatory at large distances and there-
fore capable of binding solitons to form bound states.

Here, we study the bound soliton state in the per-
turbed NLS equation

WUy + U + 2\ul?u = —iou + ee™?, (1)

where the driving frequency w and the dissipation con-
stant a are positive. Equation (1) is one of the simplest
dynamical models for a number of nonlinear physical sys-
tems [2]. It has been demonstrated by means of pertur-
bation theory [3] that Eq. (1) supports a soliton with
internal frequency w phase locked to the ac-driving term:

Ugol = 1/|w|sech(y/|w|z) exp(iwt + i6), (2)

where

2av/lo], ®)
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The soliton exists provided |sinéd| < 1, i.e., if the drive
amplitude exceeds the threshold value

€tnr = 27 Lay/|w). (4)

This approximation is valid provided a < |w| and € <
|w|3/2. Beyond the limits of applicability of the perturba-
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tion theory, one cannot find the form of a phase-locked
soliton explicitly. However, it is possible to prove that
it exists. This is a soliton riding on an oscillating back-
ground, u(t) = uoe?, in which g satisfies

—wug + 2uglug|? = —iaug + €. (5)

In the following, we analyze the interaction between
two solitons in the damped ac-driven NLS (1) [6]. To
obtain the asymptotic form of the soliton solution in this
model far from the center of the soliton, we can linearize
Eq. (1) to derive the following expression:

U= Ugo] + Up

Usol = 21 exp(—7n|T — 2| + in’t — tk|lx — zp| + @),
(6)
where z,, is the coordinate of the center of the nth soliton,
7 = 4/|w| is its amplitude, and ¢, is the phase which
locks to the external driving according to Eq. (3). The
wave number k satisfies

k=—-Im[y/n? —ia] = %, (7)

which is solely produced by the small perturbation terms
in Eq. (1). Next, considering interaction between widely
separated solitons, we insert into the interaction Hamil-
tonian

+o0
Hie = — /_ lu(z)[*dz (8)

the approximate field u(z,t) = uy s01(, t) + U2 s01(Z, t) to
obtain the effective soliton-soliton interaction potential

+o0
U= —4[ lul,sol(m)|2Re[u1,sol(m)u;,sol(m)]dm

+(1 & 2). (9)

Here u; 01 is the locked soliton [see Eq. (2)] and uz 01
is the the tail of the other locked soliton as expressed in
Eq. (6). From this, we have
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+oo
U=-16n*cos¢ / dx sech®pz e~ =7 cos(k|z — z|)

— 00

~ —32n° exp(—nz) cos(kz) cos ¢, (10)

where z = 21 — 22 and ¢ = ¢; — @2 is the phase difference
between the solitons, which vanishes since the solitons
are all phase locked to the external ac driver. In the
last step in Eq. (10) we have assumed that nz > 1 and
k/n <« 1. For k = 0, Eq. (10) reduces to the interaction
potential between two solitons for the unperturbed NLS.

It is straightforward to see (for k < n) that the poten-
tial (10) has local extrema at the points

™
W~ — (14 2n), 11
2 (1 +20) (1)
where n is a nonnegative integer. The first extremum,
n = 0, is a maximum,
™
Zmax — '2%7 (12)

which is much larger than the characteristic width of the
soliton ~ n~!. It is well known that identical solitons
with zero phase difference attract each other in the un-
perturbed NLS equation, executing a periodic oscillation
in their separation [1]. At large separations, this unper-
turbed interaction is altered by the perturbation terms
and the potential becomes oscillatory. Thus we can pre-
dict a critical separation between the two solitons given
by Eq. (12) such that the solitons attract each other if
2z < Zmax and they effectively repel each other in the op-
posite case. In the latter case, they gradually move to
the second extremum, which is a minimum,

37
Zmlﬂ - zk,

where they form a bound soliton state. When the damp-
ing is sufficiently weak, it can be expected that the two
attracting solitons will form an oscillatory bound state
in the first well of the potential. However, they can only
live for a finite time since each time they collide with one
another they will deform and are no longer able to main-
tain the locked soliton solution [see Eq. (2)]. Therefore
they will gradually lose energy and decay. If the damp-
ing is not sufficiently weak, the two solitons may collide
and radiate enough energy to form a stable soliton. If
the damping is further increased, even this single soliton
state will no longer be able to sustain itself and the two
solitons will decay to the rotating background. Further-
more, by noting that the binding energy E of the bound
state is exponentially small,

(13)

E,=-U(z=2z,) =~ 32knZexp (—%) , (14)
where n is an odd integer, we can expect that it becomes
harder and harder to detect effects of the alternating bar-
riers and wells in the potential with increasing n.

To verify these predictions, we have performed numer-
ical simulations of the soliton-soliton interactions in the
model. The simulations have confirmed the above pre-
dictions.

(a) In Fig. 1, we show evolution of the separation be-
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FIG. 1. Time dependence of the separation between two
solitons for different initial distances with a = 0.50, w = 1.00
(see text).

tween two solitons in time. The curves are the temporal
traces of the position of the density maximum of the soli-
tons. When the initial separation is chosen smaller than
the critical one (the curve with intermediate thickness
in Fig. 1), the solitons move towards each other, and
collapse into a new single soliton. If the initial separa-
tion is chosen slightly larger than the critical distance
(thickest curve), they slowly separate. For comparison,
we have plotted the periodic trajectory of the bound state
of two unperturbed solitons (the finest curve). The miss-
ing part of the curve is due to the fact that our tracing
window was not fine enough to record the fast collapse
of two maxima into the collision. Obviously, when they
pass through each other, the temporal evolution is not
singly peaked: for clarity the figure omits the traces of
the smaller peaks. In Fig. 2, we show a bound state in
the first well of the effective potential. It clearly decays
in time. We observed that the amplitude of the two soli-
tons gradually decreases. The final jiggling part of the
trace is when the two solitons gradually merge with the
rotating background. We have also observed that the two
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FIG. 2. Example of a bound state with a finite lifetime

in the first well of the effective potential, a = 0.005, w =
1.00. Shown here is the temporal trace of the position of the
maximum of the solitons.
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solitons decay into the rotating background after the first
collision if the damping is strong enough. As an aside, we
comment on the ansatz (6) of solitons riding on a rotat-
ing background. For the repelling soliton case, we have
measured the rotating background amplitudes far away
from the solitons and compared these with the solutions
of Eq. (5). They are well within 0.5% relative error. This
further justifies Eq. (6).

(b) To estimate the accuracy of the analytical expres-
sion (12), we display in Fig. 3 the dependence of the
critical distance zgax on the dissipation constant a. As
can be seen from this figure, the analytical prediction is
in good agreement with the numerical results, especially
considering that we used relatively large dissipation pa-
rameters for numerical convenience. In the measurement,
we fixed the driving frequency w = 1 for all dissipation
parameters. Notice that, due to the scaling property of
NLS, we can always rescale w to one and leave only the
parameters a and € free in Eq. (1). Taking into account
the fact that the theoretical threshold (4) tends to be
lower than the one observed we chose the strength € to
be slightly higher than the theoretical threshold with the
relative difference between them less than 1%. In the
above derivation of the effective potential, the driving
strength € does not have any significance as long as it is
sufficiently strong to sustain a soliton against damping.
As is well known, there is a range of driving strengths
which can lock solitons in the driven, damped system
[8]. In the numerical simulations, we have tested the ef-
fects of increasing ¢ on the interaction of solitons. For
example, in the case of @ = 0.40, w = 1.00 the locking
range is 0.257 < € < 0.33 above which multiple solitons
can be excited. By increasing € from 0.257 we observed
that during the initial transient period the two solitons
acquire a larger and larger oscillatory displacement with
respect to their respective initial positions, and the oscil-
lation frequency is identical to that of the external driver.
A strong oscillatory transient motion will sufficiently de-
form the solitons away from our ansatz (6) and causes
further complications in the soliton-soliton interaction.
Consequently, to achieve a good comparison between the-
ory and simulation, care should be taken in choosing €
to minimize the additional effects in the soliton-soliton
interaction. Finally, we note that the overall agreement
between the numerical results and theory would be of
15%, if the evaluation in Egs. (10) and (11) were done
numerically without the approximations we used in order
to obtain these explicit equations.

(c) We have detected the stable bound state trapped
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FIG. 3. Critical separation between two solitons vs a with

w = 1.00. +, results of numerical simulation; solid line, ana-
lytical predication.

in the second well whose separation is 13.0 for a = 0.6
and w = 1. Comparing with 2z, = 15.7 as predicted,
there is a relative error of 18%. In this case the damping
a is relative large, again the deviation from the analyti-
cal prediction is expected. The potential at this distance
is five orders of magnitude smaller than at 2z, and is
extremely weak compared to the soliton energy. In nu-
merical simulations, one might be concerned with pos-
sible discrete lattice pinning effects. We have checked
that the bound state with exponentially small binding
energy is not an artifact of discreteness. By shifting the
initial configuration a half lattice spacing the results for
the bound state were all exactly reproduced.

In conclusion, we have shown that the effective po-
tential of interaction of two widely separated solitons in
the damped, ac-driven (1+1)-dimensional NLS system is
oscillatory at large distances. We have presented the nu-
merical results on bound states and compared them with
predictions of an effective potential theory. As a quan-
titative test, the critical distances for the formation of
bound states obtained in numerical simulation are shown
to be in good agreement with the analytical predictions.

One of the authors (B.A.M.) appreciates the hospital-
ity of the Los Alamos National Laboratory. This work is
supported by the U.S. DOE.

[1] V.I. Karpman and S.S. Solov’ev, Physica D 3, 487 (1981).

[2] Yu.S. Kivshar and B.A. Malomed, Rev. Mod. Phys. 61,
763 (1989).

[3] D.J. Kaup and A.C. Newell, Phys. Rev. B 18, 5162 (1978).

[4] B.A. Malomed, Phys. Rev. A 44, 6954 (1991).

[5] B.A. Malomed, Phys. Rev. A 45, 8321 (1992)

(6] B.A. Malomed, Phys. Rev. E 47, 2874 (1993).

[7] G.P. Agrawal, Phys. Rev. A 44, 7493 (1991).

[8] A.R. Bishop, R. Flesch, M.G. Forest, D.W. McLaughlin,
and E.A. Overman, Siam J. Math. Anal. 21, 1511 (1990),
and references therein.



